Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recombinase‐Based Isothermal Amplification of Nucleic Acids with Self‐Avoiding Molecular Recognition Systems (SAMRS)

Identifieur interne : 001D89 ( Main/Exploration ); précédent : 001D88; suivant : 001D90

Recombinase‐Based Isothermal Amplification of Nucleic Acids with Self‐Avoiding Molecular Recognition Systems (SAMRS)

Auteurs : Nidhi Sharma [États-Unis] ; Shuichi Hoshika [États-Unis] ; Daniel Hutter [États-Unis] ; Kevin M. Bradley [États-Unis] ; Steven A. Benner [États-Unis]

Source :

RBID : ISTEX:0A8797721AA439305C2280653A3989814D48D564

Abstract

Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single‐stranded primers into the duplex DNA product; these are then extended using a strand‐displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base‐pairs following Watson–Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self‐avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS‐RPA is expected to be a powerful tool within the range of amplification techniques available to scientists.
Unlike standard DNA primers that have a large background signal in isothermal amplification reactions, self‐avoiding molecular recognition system (SAMRS) components are modified nucleotides that eliminate these effects when added to primers, which allows for a real‐time fluorescence output. An assay to detect MERS RNA using SAMRS primers was optimized for quick, isothermal amplification.

Url:
DOI: 10.1002/cbic.201402250


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recombinase‐Based Isothermal Amplification of Nucleic Acids with Self‐Avoiding Molecular Recognition Systems (SAMRS)</title>
<author>
<name sortKey="Sharma, Nidhi" sort="Sharma, Nidhi" uniqKey="Sharma N" first="Nidhi" last="Sharma">Nidhi Sharma</name>
</author>
<author>
<name sortKey="Hoshika, Shuichi" sort="Hoshika, Shuichi" uniqKey="Hoshika S" first="Shuichi" last="Hoshika">Shuichi Hoshika</name>
</author>
<author>
<name sortKey="Hutter, Daniel" sort="Hutter, Daniel" uniqKey="Hutter D" first="Daniel" last="Hutter">Daniel Hutter</name>
</author>
<author>
<name sortKey="Bradley, Kevin M" sort="Bradley, Kevin M" uniqKey="Bradley K" first="Kevin M." last="Bradley">Kevin M. Bradley</name>
</author>
<author>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A." last="Benner">Steven A. Benner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0A8797721AA439305C2280653A3989814D48D564</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1002/cbic.201402250</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-0FC4P6V6-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000091</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000091</idno>
<idno type="wicri:Area/Istex/Curation">000091</idno>
<idno type="wicri:Area/Istex/Checkpoint">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000172</idno>
<idno type="wicri:doubleKey">1439-4227:2014:Sharma N:recombinase:based:isothermal</idno>
<idno type="wicri:source">PMC</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162014</idno>
<idno type="RBID">PMC:7162014</idno>
<idno type="wicri:Area/Pmc/Corpus">000B66</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B66</idno>
<idno type="wicri:Area/Pmc/Curation">000B66</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000B66</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000F87</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000F87</idno>
<idno type="wicri:Area/Ncbi/Merge">000E97</idno>
<idno type="wicri:Area/Ncbi/Curation">000E97</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000E97</idno>
<idno type="wicri:doubleKey">1439-4227:2014:Sharma N:recombinase:based:isothermal</idno>
<idno type="wicri:Area/Main/Merge">001E04</idno>
<idno type="wicri:Area/Main/Curation">001D89</idno>
<idno type="wicri:Area/Main/Exploration">001D89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Recombinase‐Based Isothermal Amplification of Nucleic Acids with Self‐Avoiding Molecular Recognition Systems (SAMRS)</title>
<author>
<name sortKey="Sharma, Nidhi" sort="Sharma, Nidhi" uniqKey="Sharma N" first="Nidhi" last="Sharma">Nidhi Sharma</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hoshika, Shuichi" sort="Hoshika, Shuichi" uniqKey="Hoshika S" first="Shuichi" last="Hoshika">Shuichi Hoshika</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hutter, Daniel" sort="Hutter, Daniel" uniqKey="Hutter D" first="Daniel" last="Hutter">Daniel Hutter</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Kevin M" sort="Bradley, Kevin M" uniqKey="Bradley K" first="Kevin M." last="Bradley">Kevin M. Bradley</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A." last="Benner">Steven A. Benner</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Correspondence address: Foundation for Applied Molecular Evolution, P.O. Box 13174</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">ChemBioChem</title>
<title level="j" type="alt">CHEMBIOCHEM</title>
<idno type="ISSN">1439-4227</idno>
<idno type="eISSN">1439-7633</idno>
<imprint>
<biblScope unit="vol">15</biblScope>
<biblScope unit="issue">15</biblScope>
<biblScope unit="page" from="2268">2268</biblScope>
<biblScope unit="page" to="2274">2274</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2014-10-13">2014-10-13</date>
</imprint>
<idno type="ISSN">1439-4227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1439-4227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single‐stranded primers into the duplex DNA product; these are then extended using a strand‐displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base‐pairs following Watson–Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self‐avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS‐RPA is expected to be a powerful tool within the range of amplification techniques available to scientists.</div>
<div type="abstract" xml:lang="en">Unlike standard DNA primers that have a large background signal in isothermal amplification reactions, self‐avoiding molecular recognition system (SAMRS) components are modified nucleotides that eliminate these effects when added to primers, which allows for a real‐time fluorescence output. An assay to detect MERS RNA using SAMRS primers was optimized for quick, isothermal amplification.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Sharma, Nidhi" sort="Sharma, Nidhi" uniqKey="Sharma N" first="Nidhi" last="Sharma">Nidhi Sharma</name>
</region>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A." last="Benner">Steven A. Benner</name>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A." last="Benner">Steven A. Benner</name>
<name sortKey="Bradley, Kevin M" sort="Bradley, Kevin M" uniqKey="Bradley K" first="Kevin M." last="Bradley">Kevin M. Bradley</name>
<name sortKey="Hoshika, Shuichi" sort="Hoshika, Shuichi" uniqKey="Hoshika S" first="Shuichi" last="Hoshika">Shuichi Hoshika</name>
<name sortKey="Hutter, Daniel" sort="Hutter, Daniel" uniqKey="Hutter D" first="Daniel" last="Hutter">Daniel Hutter</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0A8797721AA439305C2280653A3989814D48D564
   |texte=   Recombinase‐Based Isothermal Amplification of Nucleic Acids with Self‐Avoiding Molecular Recognition Systems (SAMRS)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021